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We consider a broad class of situations where a society must choose from a finite
set of alternatives. This class includes, as polar cases, those where the preferences
of agents are completely unrestricted and those where their preferences are
single-peaked. We prove that strategy-proof mechanisms in all these domains must
be based on a generalization of the median voter principle. Moreover, they must
satisfy a property, to be called the ``intersection property,'' which becomes increas-
ingly stringent as the preference domain is enlarged. In most applications, our
results precipitate impossibility theorems. In particular, they imply the Gibbard�
Satterthwaite theorem as a corollary. Journal of Economic Literature Classification
Number: D71. � 1997 Academic Press

1. INTRODUCTION

We consider a broad class of situations where a society must choose
from a finite set of alternatives, and we provide a full characterization of
the set of strategy-proof social choice functions under such situations. Our
class includes, along with many others, the polar cases where the prefer-
ences of agents are completely unrestricted and where these preferences are
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single-peaked in one dimension. Our general characterization implies, as
corollaries, the impossibility theorem of Gibbard and Satterthwaite, as well
as Moulin's characterization of strategy-proof voting schemes on the line.
Hence, results that have been widely perceived as very different appear here
as the common consequence of some fundamental facts. These are, first, that
strategy-proof mechanisms must be based on an appropriate generalization
of the median voter rule and, second, that they must satisfy the intersection
property.

This condition, to be described below, becomes increasingly stringent
and forces dictatorship as the preference domain is enlarged. Consequently
positive results only arise under very strong domain restrictions. On
balance our results confirm the widespread pessimism that exists about the
possibility of designing strategy-proof mechanisms.

A society must choose from a finite set of alternatives, and each alter-
native : can be described as a K-tuple of integer values (:1 , ..., :K), with
each :k belonging to a pre-specified integer interval [ak , bk]. Each dimen-
sion k stands for one possible relevant characteristic of our alternatives, the
elements in the integer interval [ak , bk] describe the levels at which the k th
characteristic may be satisfied, and alternatives can be identified by the
levels (:1 , ..., :K) at which they perform on each of the characteristics. For
example, a firm may have to choose sets of employees from a given set of
applicants K=[1, 2, ..., K]. Since each subset of K may be described by its
characteristic function, subsets of applicants can be identified with K-tuples
in B=>K

k=1 [0, 1], with :k=0 if the k th applicant is not chosen and
:k=1 if he is. Since modeling alternatives for collective choice as multi-
dimensional vectors has a long tradition in economics and political science,
the reader will find many other situations where to apply this basic
framework. Yet, our analysis does not cover all types of multidimensional
alternatives. Consistency with some of the assumptions to come make it
best to consider interpretations where a higher level of the characteristic is
not necessarily associated to higher satisfaction for the voter. Locational
characteristics are a good example of cases we cover. Amounts spent on
public goods are not, but other qualitative features of a public project may
well be encompassed.

What is specific to our paper is the incorporation of different types of
constraints to collective decision-making. The firm in our example may
have a limited number of vacancies, say three. Some of these vacancies, say
one, may have to be filled necessarily, while the others may or may not,
depending on the quality of applicants. Thus, although any subset of
applicants is a potential or conceivable alternative, only subsets with at
least one applicant and at most three are feasible. Thus, alternatives will
typically belong to a Cartesian product (also called a box), but the range
of feasible alternatives will typically not be a Cartesian product itself.
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We investigate the set of strategy-proof social choice functions selecting
feasible alternatives, when the preferences of voters satisfy a generalized
version of single-peakedness. When all K-tuples of characteristics are
feasible, this set is known to coincide with the family of all generalized
median voter schemes (Barbera� , Gul and Stacchetti [2]). We prove
(Theorem 3) that these methods are still the only possible candidates for
strategy-proof decision making in our setting. Those are based on a strong
form of decentralized decision-making: a value is selected for each of the
characteristics describing alternatives, and then the alternative jointly
defined by these independently selected values is the recommended social
outcome. To what extent can we still use generalized median voter schemes
to make social choices when feasibility restrictions preclude some K-tuples
of values as possible outcomes?. Of course, if we allow agents to vote for
unfeasible alternatives in the range of a given generalized median voter
scheme f, then unfeasible recommendations will emerge. Moreover, even if
agents are restricted to vote for feasible alternatives, some combinations of
individually admissible votes may result in unfeasible collective recom-
mendations. Whether or not this problem arises depends jointly on the
shape of the feasible set and on the specific generalized median voter
scheme under consideration. We prove (Theorem 1) that generalized
median voter schemes respect feasibility if and only if they satisfy the
intersection property. The set of such generalized median voter schemes
constitutes the class of all strategy-proof social choice functions under the
strong assumption that the domain of preferences only includes single-
peaked preferences whose top alternative is feasible. The intersection
property is automatically satisfied if the set of feasible outcomes is
Cartesian, but otherwise becomes very stringent. For many shapes of the
feasible set it precipitates impossibility results. In other cases, nontrivial
social choice functions satisfy the intersection property. Yet, these positive
cases should be qualified, because they may not be robust to relaxations of
the strong assumption that the only admissible preferences are those with
feasible tops. At any rate, our unified treatment identifies the intersection
property as a condition to be met, and provides a systematic approach to
discover the structure of strategy-proof social choice functions under any
type of constraints.

The role of single-peakedness in avoiding strategic manipulations is already
mentioned in Black's [5] seminal article. Moulin [12] proved that
generalized median voter schemes on the real line were the only strategy-proof
mechanisms among those requiring agents to reveal only their preferred alter-
native. Barbera� and Jackson [4] extended the analysis to cover all closed
ranges. In that more general setting, they also proved that, in fact, dropping
the ``tops only'' requirement does not enlarge the set of strategy-proof
mechanisms, a fact already proven by Sprumont [15] for the real line.
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The first extensions of these results from one to several dimensions are
due to Laffond [10], Chichilnisky and Heal [8] and Border and Jordan
[6]. The papers by Barbera� , Sonnenschein and Zhou [3], Barbera� , Gul
and Stacchetti [2], Bossert and Weymark [7], Le Breton and Sen [11]
and Serizawa [14] are those having a closer relationship to the present
work, but only cover the case where the range is a Cartesian product. Our
proofs cannot rely on previous results, because the non-cartesian form of
the range raises new difficulties. Yet, some steps follow lines similar to
those in Barbera� and Peleg [1] and Barbera� , Sonnenschein and Zhou [3].

The paper is organized as follows. After notation and definitions,
Section 2 presents the notion of a generalized median voter scheme.
Section 3 provides the characterization of generalized median voter
schemes leading to feasible outcomes when individual votes respect
feasibility. Section 4 then shows that generalized median voter schemes are
in fact the only strategy-proof mechanisms in our setting. The aim of
Section 5 is to show that the Gibbard�Satterthwaite Theorem is an
immediate consequence of our results. Finally, an Appendix at the end of
the paper contains some of the proofs.

2. PRELIMINARIES: GENERALIZED MEDIAN VOTER SCHEMES

Agents are the elements of a finite set N=[1, 2, ..., n]. We assume that
n is at least 2.

Alternatives are K-tuples of integer numbers. For integers a, b # Z,
with a<b, we will denote the integer interval [a, b]=[a, a+1, ..., b].
A K-dimensional box B is a Cartesian product of K integer intervals: B=
>K

k=1 Bk , where Bk=[ak , bk] and ak<bk . A subbox of B is any box A
contained in B. We endow B with the L1-norm. That is, for every : # B,

&:&= :
K

k=1

|:k |.

Given :, ; # B, the minimal box containing : and ; is defined by

MB(:, ;)=[# # B | &:&;&=&:&#&+&#&;&].

Preferences are binary relations on alternatives. Let U be the set of com-
plete, transitive and asymmetric preferences on B. Preferences in U are
denoted by P, P$, Pi , P$i , ... . For P # U, A�B, we denote the alternative in
A most preferred by P as {A(P), and we call it the top of P on A. {B(P)#
{(P) will be called the unconstrained top of P.
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Preference profiles are n-tuples of preferences on B, P # Un. Profiles
P=(P1 , ..., Pn) are also represented by (Pi , P&i) when we want to stress
the role of i 's preference. In particular, (Pi , P&i) and (P$i , P&i) will stand
for two profiles which differ in i 's preference and are otherwise identical.

A social choice function on P� �U is a function F : P� n � B.

Definition 1. The social choice function F : P� n � B respects voter's
sovereignty on A�B if for every : # A there exists P # P� n such that
F (P)=:.

The range of a social choice function F : P� n � B, is denoted by RF . That
is, RF=[: # B | there exists P=(P1 , ..., Pn) # P� n such that F (P)=:].

We will often start from social choice functions defined on domains P� n

and then consider the restriction of F on subsets of P� n. When this domain
restriction occurs, we identify the restriction of F with itself.

Social choice functions require each agent to report some preference.
A social choice function is strategy-proof if it is always in the best interest
of agents to reveal their preferences truthfully. Formally,

Definition 2. A social choice function F : P� n � B is manipulable on
P� �U if there exists P=(P1 , ..., Pn) # P� n, i # N and P$i # P� such that
F (P$i , P&i) PiF (P). A social choice function is strategy-proof on P� if it is
not manipulable on P� .

The preferences of voters are assumed to be strict and to respect a
generalized notion of single-peakedness. The preferences P of any voter
must be such that they have a unique maximal element {(P) on B, and
whenever alternative : is on a minimal path from ; to {(P) (and thus
closer than ; to the best alternative) then :P;.

Definition 3. A preference P on a box B is multidimensional single-
peaked with bliss point : # B iff {(P)=:, and ;P# for all ;, # # B (;{#)
satisfying &:&#&=&:&;&+&;&#&.

This restriction coincides with the classical notion of single-peakedness
when alternatives are one dimensional and preferences are strict. It con-
stitutes a natural extension of single-peakedness to our framework.

We denote by P the set of all multidimensional single-peaked preferences
on B; P(:)=[P # P | {(P)=:] is the set of all such preferences whose top
is :. For A�B, P(A) is the set of all single-peaked preferences with top on
A, that is P(A)=�: # A P(:). We refer to P(A) as the set of preferences
closed on A. Notice that P(B)=P.
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We want to single out a special class of social choice functions having
the informationally nice property that they only require agents to reveal
what is their preferred alternative on the range of the function.

Definition 4. A social choice function F : P� n � B is a voting scheme on
RF if for every P, P$ # P� n

{RF
(Pi)={RF

(P$i) \i # N O F (P)=F (P$).

We will say colloquially that voting schemes have the ``tops-only''
property. Notice that our definition is relative to the range RF of the
function. Thus, two preferences P, P$ on B with the same top {(P)={(P$)
outside of RF may lead to different choices under F, if their tops on the
range {RF

(P) and {RF
(P$) are not the same. Therefore, to any voting

scheme F : P� n � B we can associate a function f : Rn
F � RF defined by

F (P1 , ..., Pn)=f ({RF
(P1), ..., {RF

(Pn))

for (P1 , ..., Pn) # P� n.
From now on, when this does not lead to confusion, we shall abuse

language and also call such a function a voting scheme. When we say then
that the voting scheme f : Rn

F � RF is strategy-proof on P� we mean that the
social choice function F : P� n � B (uniquely) associated with f is strategy-
proof on P� .

We close this section by defining generalized median voter schemes. One
description is based on the notion of left-coalition systems. For each
dimension k, each set of voters l and each value ! # [ak , bk] in its range
of definition on that dimension, a left-coalition system Lk indicates whether
or not that set of voters, or coalition, belongs to the system at this given
value. If it does (l # L(!)), this means that the coalition can guarantee the
choice of a value not higher than ! whenever the vote of all members on
that dimension is less than or equal to !. For this interpretation to be con-
sistent, some natural conditions are required from left-coalition systems.
Any left-coalition system generates a unique social choice function on an
integer interval, through the following procedure: agents declare their
preferred value in the interval, and the chosen value is the (unique) !� hav-
ing the property that the set of agents voting for values below or equal to
!� belongs to the coalition system, while the set of those voting for values
strictly below !� does not belong. A similar description can be provided
through the symmetric concept of a right-coalition system.

Definition 5. A left (right)-coalition system on Bk=[ak , bk] is a
correspondence Ck that assigns to every :k # Bk a collection of non-empty
coalitions Ck(:k) satisfying the following conditions:
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(1) If c # Ck(:k) and c/c$, then c$ # Ck(:k).

(2) If ;k>(<) :k and c # Ck(:k), then c # Ck(;k), and

(3) Ck(bk)=2N&< (Ck(ak)=2N&,).

A family C of left (right)-coalition systems on B is a collection [Ck]K
k=1

where each Ck is a left (right)-coalition system on Bk .
Given a left (right)-coalition system Ck on Bk we say that c # Ck(:k) is a

minimal left (right) coalition if for every i # c, c&[i] � Ck(:k).
L will refer to a family of left-coalition systems and R to a family of

right-coalition systems. Moreover lk(:k) will denote an element of Lk(:k)
and rk(:k) an element of Rk(:k). However, :k and k will be omitted when
no confusion may arise.

Definition 6. Let :~ # Rn
F and ;k # Bk . Define the coalition to the left

(right) of ;k at :~ by: l(:~ , ;k)=[i | :~ i
k�;k](r(:~ , ;k)=[i | :~ i

k�;k]).

Definition 7. Let L=[Lk]K
k=1 (R=[Rk]K

k=1) be a family of left
(right)-coalition systems on B. The voting scheme f : Rn

F � B defined as
follows:

f (:~ )=; iff l(:~ , ;k) # Lk(;k)

and l(:~ , ;k&1) � Lk(;k&1) \k=1, ..., K (1)

( f (:~ )=; iff r(:~ , ;k) # Rk(;k)

and r(:~ , ;k+1) � Rk(;k+1) \k=1, ..., K (1$))

is called a Generalized Median Voter Scheme (GMVS) defined by L(R).

It is clear that either left or right coalition systems can be taken as the
primitive concept for the definition of a generalized median voter scheme.
Proposition 1 gives us the exact connection between the left and right
coalition systems associated with a given generalized median voter scheme.
This connection will be used extensively in the sequel.

Proposition 1. Let f : Rn
F � RF be a generalized median voter scheme

defined by L and also by R. For every k=1, 2, ..., K let

Rk*(:k)=[r # 2N | r & l{< \l # Lk(:k&1)] for every ak<:k�bk , and

Rk*(ak)=2N&<.

Then, for every k=1, ..., K Rk*(:k)=Rk(:k) for every ak<:k�bk .

Proof. See the Appendix.
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Before finishing this section we would like to single out the class of
neutral and anonymous generalized median voter schemes: voting by quota.
A generalized median voter scheme f is voting by quota if the left (right)
coalition system L(R) that defines it has the following properties, for every
k=1, ..., K:

(1) Lk(:k)=Lk(;k)=Lk (Rk(:k)=Rk(;k)=Rk) for every :k , ;k #
Bk , and

(2) S # Lk(S # Rk) if and only if >S�Ql
k (>S�Q r

k).

It is easy to see, by using Proposition 1, that the relationship between
the left quotas (Ql

k) and the right quotas (Q r
k) defining a quota system is

the following: Ql
k+Q r

k=n+1.

3. ADMISSIBLE COALITION STRUCTURES UNDER
CONSTRAINTS: A CHARACTERIZATION RESULT

Consider the problem of selecting a specific mechanism to achieve the
type of collective decisions under consideration. First, there is the question
whether we want to look for any type of procedure, or restrict attention to
generalized median voter schemes. Our results in Section 4 will prove that,
if we are interested in strategy proofness, we should stick to generalized
median voter schemes.

But suppose, now, that we know about some a priori feasibility con-
straints. Say that, while the box B describes the set of conceivable alter-
natives, only those in A/B are actually feasible outcomes. Now the
possible choice for the designer must be reassessed in several directions:
the picture changes quite dramatically.

First of all, notice that letting agents vote for unfeasible alternatives
would easily lead to recommend unfeasible results, since generalized
median voter schemes respect unanimity. Thus, we must require agents to
vote for feasible alternatives only. But even then, not any generalized
median voter scheme will do. Depending on the shape of the set A, and on
the structure of the left (or right) coalition system defining f, it may well
be, as Example 1 below illustrates, that f would recommend an unfeasible
outcome even if each individual voted for a feasible one.

Example 1. Consider the case K=2, [a1 , b1]=[0, 1], [a2 , b2]=
[0, 1], B=[0, 1]2, and N=[1, 2, 3, 4]. Let A=[(0, 0), (0, 1), (1, 0)] and
f be voting by right quota 2 (Qr

1=Qr
2=2). Then, f ((0, 1), (0, 1), (1, 0),

(1, 0))=(1, 1) � A, even if all arguments in the function belong to A.
However, if N=[1, 2, 3], then the same rule would always guarantee out-
comes in A when all agents vote in A.
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When f always chooses a feasible outcome, as long as agents vote for
feasible ones, we say that f respects feasibility for A under the aggregation
process. A designer who is informed of feasibility constraints should
concentrate attention on feasibility respecting mechanisms.

Definition 8. A voting scheme f : Bn � B respects feasibility on A/B if
f (:1, :2, ..., :n) # A for every (:1, :2, ..., :n) # An.

Notice that any generalized median voter scheme will respect feasibility
whenever A is a subbox of B.

Suppose then, that given a feasible set A, we take any generalized
median voter scheme f respecting feasibility for A. Can we guarantee that
f will be strategy-proof on the domain of all single-peaked preferences? Not
quite! Remember that now we are requiring agents to vote for their top
on the range, and no longer for their unconditionally best alternative.
Generalized median voter schemes are strategy-proof when the top alter-
native of single-peaked agents is feasible and therefore voting for the
unrestricted and the restricted top is the same. Otherwise, there would be
room for manipulation, as shown by Example 2.

Example 2. Consider again the case K=2, [a1 , b1]=[a2 , b2]=[0, 1],
B=[0, 1]_[0, 1]. Let P� =P, N=[1, 2, 3], and A=[(0, 0), (0, 1), (1, 0)].
Suppose that the generalized median voter scheme is voting by right quota
2 (as in Example 1). Let P1 and P2 be preferences in P with {(P1)=(0, 0) and
{(P2)=(0, 1). Let P3 and P$3 be the following preferences for agent 3: (1, 1)
P3(1, 0) P3(0, 1) P3(0, 0) and (0, 1) P$3(0, 0) P$3(1, 1) P$3(1, 0). Notice that
{A(P3)=(1, 0) and {A(P$3)={(P$3)=(0, 1). Yet F is not strategy-proof since
(0, 1)=F(P1 , P2 , P$3) P3 F(P1 , P2 , P3)=(0, 0). However, F is strategy-proof
if we let the set of admissible preferences to be exactly P(A).

What happens is that single-peakedness does not restrict too much the
direction of preferences among alternatives that are not top, unless they lie
in rather specific positions. Because of that, the strength of single-peaked-
ness depends on the shape of A. We may even have, as an extreme case,
a set A/B and a class P� of single-peaked preferences on B, such that any
conceivable ordering of the elements of A is the restriction on A of some
single-peaked preferences in P� with top in A.

Because of the above, each of our statements must be qualified with
reference to the set of preferences where it applies, which in turn is linked
to the set of alternatives that are a priori feasible. Given a set A of feasible
alternatives, we focus on the domain P(A)=P� . Remember (see Section 2)
that this is the set of single-peaked preferences closed on A, that is, the set
of all preferences whose unconditional top is an element of A. Clearly, our
positive results would still hold if domains were restricted further, but not
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if we enlarge them to allow for preferences with unfeasible tops. Since it is
often the case that we prefer what we can not get, our preference domains
are very narrow indeed. This is the major reason why overall conclusions
have negative flavor.

When characterizing feasibility preserving voting schemes, we'll look for
schemes respecting voter's sovereignty on A. This is very natural in our
context, since any reason why a feasible alternative should not be in the
range could be taken into account as still another form of unfeasibility.

In order to motivate the form of our results, consider the minimal box
B containing A, a point : in the box but not in A, and a set S�A. If we
can choose a distribution of agents with tops in S�A whose joint vote
under f would lead to :, then f is not feasibility preserving. We look for a
condition implying that such distribution cannot be found for any S�A
and any : in the minimal box B (clearly, outcomes outside B will never
emerge). Our characterization comes in two parts. We first present a condi-
tion, the intersection property, which f must satisfy for any : � A, S�A in
order to preserve feasibility. The intersection property guarantees some
coordination among the decisions taken on each separate dimension by
requiring that certain agents belong simultaneously to different coalitions
whose separate power could otherwise lead to unfeasible outcomes. Our
second result sharpens the above requirement: for each :, there is one set
S� �A, the crucial set, such that, if the intersection property holds for : and
S� , then it also holds for : and any S�A. This implies a considerable sim-
plification in the practical use of the condition. We now proceed formally.

For :, ; # B, let M+(:, ;)=[k # K | ;k>:k] and M&(:, ;)=[k # K |
;k<:k] be the sets of dimensions in which the components of ; are strictly
greater or smaller than those of :, respectively.

Definition 9. Let A�B and let f : An � B be a generalized median
voter scheme defined by L and R. Let : � A and S�A. We say that f has
the Intersection Property for (:, S) iff for every r(:k) # R(:k) and l(:k) #
L(:k) we have that

,
; # S _\ .

k # M+(:, ;)

l(:k)+_ \ .
k # M&(:, ;)

r(:k)+&{<.

If k � �; # S [M&(:, ;) _ M+(:, ;)], the right or left coalitions selected
for this dimension do not play any role in the condition.

We will say that f has the Intersection Property if it has it for every
(:, S) # (B&A, 2A).
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Theorem 1. Let f : An � B be a generalized median voter scheme respec-
ting voter's sovereignty on A. Then f preserves feasibility on A if and only if
it satisfies the intersection property.

Proof. See the Appendix.

Notice that, when A is a Cartesian product, any choice of values in each
of the dimensions leads to a feasible alternative. Hence, the intersection
property should not and does not impose any restriction when ranges are
Cartesian. Depending on the structure of the set of alternatives the property
becomes a more or less stringent requirement. Section 5 includes a proof of
the Gibbard�Satterthwaite Theorem based on the family of conditions on left
and right coalitions imposed by the intersection property.

Given a feasible set A, an unfeasible alternative : � A, and a social choice
function f, whether or not the intersection property holds would in prin-
ciple involve calculations for any subset S of A. Our next result will prove
that, in fact, one may restrict attention to a single S, what we call the cru-
cial S for :. From now on, we will often identify, without loss of generality,
the vector : � B&A with the vector (0, ..., 0).

Definition 10. Let S=[v1, ..., vT ]�A and let V=S _ [vT+1]�A. We
say that vT+1 is redundant for S if for every generalized median voter
scheme f respecting voter's sovereignty on A if !� =(!1, ..., !n) # Vn is such
that f (!� )=0 then there exists #~ =(#1, ..., #n) # Sn such that f (#~ )=0.

For v # RK, define sup+(v)=[k # K | vk>0] and sup&(v)=[k # K |
vk<0].

Definition 11. S�A (>S�2) is called crucial if [v # S O v is not
redundant for S&[v]] and [v � S O v is redundant for S].

Definition 12. The set A is a support transformation of A$ if
[v # A&A$ O _v$ # A$ such that sup+(v)=sup +(v$) and sup&(v)=
sup&(v$)] and [v$ # A$&A O _v # A such that sup+(v$)=sup+(v) and
sup&(v$)=sup&(v)].

Theorem 2. For any generalized median voter scheme f and every
: # B&A, there is a unique crucial set S� (up to a support transformation)
such that f satisfies the intersection property for any (:, S) if and only if it
satisfies it for (:, S� ).

Proof. See the Appendix.
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Example 3 below illustrates the main concepts used in the statement of
Theorem 1 as well as its scope and usefulness to solve the feasibility
question for problems of interest.

Example 3. A family of problems will arise from cases like the following:
a municipality must choose a mix of projects with different levels of inten-
sity. We can represent the conceivable courses of action as K-tuples of
integer values. If the municipality can face the cost of any set of packages
and has no further restrictions, all these K-tuples will also represent feasible
choices.

Budgetary and political constraints will arise in many cases, though.
Suppose that high levels of expenditure on all dimensions would exceed the
budget, and�or combinations of low levels would be politically unfeasible.

Let's examine in general this family of problems where B=>K
k=1 [ak , bk]

for the particular case of voting by quota.
By considering only single-peaked preferences whose unconditional tops

are feasible we implicitly assume that higher values for a characteristic
imply a higher cost, but that citizens do not necessarily prefer the most
expensive projects. In some cases, this assumption may be very restrictive.

Consider first the case of a budget constraint coming either from a
restriction of a maximum or a minimum amount to spend. The intersection
property is equivalent to �K

k=1 Qr
k>(K&1) n for the case of a maximum,

and �K
k=1 Ql

k>(K&1) n for the case of a minimum. To see that, suppose
that K=2. It is immediate to check that for t=r, l:

[Qt
1+Qt

2>n]

� [S & T{< for all S, T�N such that >S�Qt
1 and >T�Qt

2].

Finally, a simple induction argument on K shows that the intersection
property is equivalent to both inequalities.

Now, start with the case where both restrictions are in effect at the same
time. Using again the fact that Ql

k+Q r
k=n+1 and the condition on the

left quotas one obtains that Kn&�K
k=1 Q r

k+K>(K&1) n. This, together
with the condition on the right quotas implies

K+n> :
K

k=1

Q r
k>(K&1) n. (2)

Therefore a necessary condition is for K and n to satisfy the following
inequality:

K+n>(K&1) n+1 � 2n&1>K(n&1) � K<
2n&1
n&1

�3.
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Thus, K must be smaller or equal than 2, which only leaves K=2 as an
interesting case. By (2) with K=2, we have that n+2>Qr

1+Qr
2>n O

Qr
1+Qr

2=n+1, which together with Ql
k+Qr

k=n+1 implies Ql
1+Ql

2=
n+1. Therefore Qr

1=Ql
2 and Ql

1=Qr
2 . Moreover, if we impose total

neutrality, i.e. Ql
1=Ql

2=Ql, then n has to be odd and Ql=Ql=(n+1)�2.
The above partial impossibility result is due, in part, to the strong

restrictions of anonymity and neutrality imposed by voting by quota. It is
possible to construct examples showing that, in general, we can find non-
trivial generalized median voter schemes when there are maximum and
minimum budget constraints and K>2.

4. THE STRUCTURE OF STRATEGY-PROOF SOCIAL
CHOICE FUNCTIONS

We have learned how to construct feasibility preserving generalized
median voter schemes. Results in this section show that, in fact, these are
the only social choice functions guaranteeing strategy-proofness as long
as voters are restricted to reveal single-peaked preferences on feasible
alternatives.

There is a close formal parallelism between our results and those
obtained in Barbera� , Gul and Stacchetti [2] for functions with Cartesian
range. However, since we now deal with arbitrary ranges, we cannot rely
on the same proofs, and we must also qualify our statements with reference
to specific classes of preferences. We shall be interested in sets containing
all single-peaked preferences with unconstrained top on some superset of
the range. In the sequel, P� will stand for a generic subset of P, closed on
some set containing RF . In particular, remember that P� =P(RF) stands for
the set of all single-peaked preferences with unconstrained top on the
range RF .

Theorem 3. If F : P� n � B is a strategy-proof social choice function on
P� , then F is a generalized median voter scheme on RF .

Proof. See the Appendix.

Some salient facts on strategy-proof social choice functions emerge along
the proof, and we highlight them here, in the form of Propositions 2 and
3, since they are of independent interest. First of all, strategy-proof social
choice functions in our setting can only depend on each agent's preferred
alternative on A (Proposition 2). Moreover (Proposition 3), they can be
decomposed into separate procedures, one for each dimension (see Le
Breton and Sen [11]).
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Proposition 2. If F : P� n � B is strategy-proof on P� , then F is a voting
scheme on RF (it is tops-only on RF).

Proof. See the Appendix.

Proposition 3. If f : Rn
F � B is a strategy-proof voting scheme on P� ,

then f is a generalized median voter scheme on RF .

Proof. See the Appendix.

The proof of Proposition 3 involves a careful examination of the power
of coalitions under strategy-proof social choice functions. We provide the
main idea of the proof in what follows.

Definition 13. Given a voting scheme f : Rn
F � RF , for each k=

1, 2, ..., K and every :k<bk (ak<:k) we define the set of strong [weak] left
(right) coalitions L� f

k(:k) (R� f
k(:k)) [L f

k(:k) (R f
k(:k))] induced by f on Bk

as follows:

L f
k(:k)=[l # 2N | _:~ # Rn

F such that :~ i
k�:k \i # l, :~ i

k>:k \i � l

and ( f (:~ ))k�:k],

R f
k(:k)=[r # 2N | _:~ # Rn

F such that :~ i
k�:k \i # r, :~ i

k<:k \i � r

and ( f (:~ ))k�:k],

L� f
k(:k)=[l # 2N | if :~ # Rn

F is such that :~ i
k�:k \i # l, then ( f (:~ ))k�:k],

R� f
k(:k)=[r # 2N | if :~ # Rn

F is such that :~ i
k�:k \i # r, then ( f (:~ ))k�:k],

and L f
k(bk)=L� f

k(bk)=R f
k(ak)=R� f

k(ak)=2N&<.

What we have called a left (right)-coalition system assigns to every point
in a one-dimensional box a collection of coalitions with a particular struc-
ture (properties (1), (2) and (3) in Definition 5). This concept is, a priori,
independent of any voting scheme. On the other hand, the sets of weak or
strong left (right) coalitions associated with an arbitrary voting scheme f
need not satisfy conditions (1), (2) and (3), even if they are also collections
of coalitions for every point in a one-dimensional box. Our proof of
Proposition 3 consists in showing that whenever a voting scheme f is
strategy proof on P� , the sets of weak and strong left (right) coalitions
defined by f coincide and are, in fact, a family of left (right) coalition
systems (see Lemma 2 in the proof of Proposition 3).

We summarize the joint implications of Theorems 1, 2 and 3 in the
following Corollary, which only applies when the tops of preferences
belong to the feasible set.
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Corollary 3. Let F : P(A)n � A be an onto social choice function.
Then F is strategy-proof on P(A) if and only if it is a generalized median
voter scheme satisfying the Intersection Property.

5. THE GIBBARD�SATTERTHWAITE THEOREM

In this section we show how to prove the Gibbard�Satterthwaite
Theorem as an implication of our results. This application is also presented
as a proof of the strength of our theorems.

A set of agents, N=[1, 2, ..., n], must choose one alternative from a
finite set K=[1, 2, ..., K] (K>2). We can still view this problem as a par-
ticular case of voting under constraints. To do that, we identify each alter-
native as one vector of the K-dimensional euclidean basis, and view the
remaining vertices of the K-dimensional hypercube as conceivable but
unfeasible alternatives. Having embedded our alternatives in RK, we now
want to argue that the assumption that preferences are single-peaked on
the K-dimensional hypercube and have tops on feasible alternatives
imposes no restriction on the orderings of the K (feasible) alternatives since
none of the vectors of the euclidean base lies on the minimal box between
two other vectors of the same base (in fact, the L1-distance between any
two of such vectors is always equal to two). Hence, we can apply our
results on constrained voting to what in fact is the case considered by
Gibbard�Satterthwaite. We will see that one gets the dictator directly from
the following two conditions of the intersection property:

(a) For every j=1, 2, ..., K, every rj # Rj , and every k{ j, r j & rk{<
for every rk # Rk .

(b) For every l1 # L1 , l2 # L2 , ..., and lK # LK, �K
j=1 lj{<.

Let j and k be arbitrary ( j{k) and fix rj # Rj . Condition (a) says that
rj & rk{< for every rk # Rk . By Proposition 1 we must have that r j # Lk .
Therefore Rj�Lk for every j and k ( j{k). We want to show that the
inclusions also hold in the other direction. Suppose not, there exists j and
k ( j{k) and lk # Lk such that lk � Rj . By Proposition 1 there must exist
lj # Lj such that lk & l j=<, contradicting condition (b). Therefore if K>2
the set of left and right coalitions are the same and coincide across the K
dimensions. Notice that if K=2, then R1=L2 and L1=R2 , which does
not imply that the generalized median voter scheme is dictatorial. Let
C=R1= } } } =RK=L1= } } } =LK .

Next, we want to show that C only has one minimal set. Suppose
otherwise, D{E and D, E # C. Since conditions (a) and (b) have to be
satisfied, we must have that D & E{<. Let F=D & E. Since D and E are
minimal and different we must have that F/D and F/E. Condition (b)
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implies that F & D${< for every D$ # C, and therefore, by Proposition 1,
we have that F # C, which is a contradiction to the fact that D and E were
minimal sets in C. Thus, there must be a unique minimal set in C. Call it D.

To get the dictator, we must show that >D=1. But this has to be the
case, since i # D implies that [i] & D${< for every D$ # C, and therefore
[i] # C.

APPENDIX

Proof of Proposition 1. Since there is a bijection between right-coalition
systems and generalized median voter schemes, it is sufficient to show that

[ f (:~ )]k=;k � r(:~ , ;k) # Rk*(;k) and r(:~ , ;k+1) � Rk*(;k+1).

Let [ f (:~ )]k=;k . Notice that r(:~ , ;k)=[l(:~ , ;k&1)]c and r(:~ , ;k+1)=
[l(:~ , ;k)]c. Since f is a generalized median voter scheme we have that
l(:~ , ;k)=[i | :~ i

k�;k] # Lk(;k) and l(:~ , ;k&1)=[i | :~ i
k�;k&1] � Lk

(;k&1). To show that r(:~ , ;k) # Rk*(;k) suppose not. Then there would
exist l$ # Lk(;k&1) such that r(:~ , ;k) & l$=<. This would imply that
l$�l(:~ , ;k&1) contradicting the fact that l(:~ , ;k&1) � Lk(;k&1). To
show that r(:~ , ;k+1) � Rk*(;k+1) we have to exhibit a l$ # Lk(;k) such
that r(:~ , ;k+1) & l$=<, but l(:~ , ;k) satisfies this condition since its com-
plementary set is r(:~ , ;k+1).

To prove the converse, let r(:~ , ;k) # Rk*(;k) and r(:~ , ;k+1) �

Rk*(;k+1). For every l$ # Lk(;k&1) we have that r(:~ , ;k) & l${<, but
r(:~ , ;k) & l(:~ , ;k&1)=< and therefore l(:~ , ;k&1) � Lk(;k&1). There
exists l$ # Lk(;k) such that r(:~ , ;k+1) & l$=< implying that l$�
l(:~ , ;k) # Lk(;k). Since f is a generalized median voter scheme we must
have that [ f (:~ )]k=;k . Q.E.D.

Lemma 1. Let T=[v1, v2, ..., vT ] be a subset of RK such that for every
1�t�T and every 1�k�K, vt

k is equal to either 1, 0 or &1. Assume there
exists 1�t�T such that vt=(&1, 0, ..., 0). Let [(At

k , Bt
k)K

k=1]T
t=1 be a

family of subsets of 2N. Assume:

(i) For every 1�k�K : v1
k=v2

k= } } } =vT
k iff vt

k=0 for every 1�t�T.

(ii) For every 1�t�T and every 1�k�K : At
k{< iff vt

k=1 and
Bt

k{< iff vt
k=&1.

If �T
t=1 [(�K

k=1 At
k) _ (�K

k=1 Bt
k)]=< then there exist !1, ..., !n # T such

that for every 1�k�K [i # N | !i
k�0]$�T

t=1 Bt
k and [i # N | !i

k�0]$

�T
t=1 At

k .
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Proof. By induction on T. Let T=2 and assume that the hypothesis are
true for v1, v2, and (A1

k , B1
k , A2

k , B2
k)K

k=1. Assume that v1, v2{0, otherwise
the result is trivial. Define !1, ..., !n # [v1, v2] as follows: !i=v1 for every

i # \ .
K

k=1

A2
k+_ \ .

K

k=1

B2
k+

and !i=v2 for every

i # _\ .
K

k=1

A1
k+_ \ .

K

k=1

B1
k+&

c

;

this can be done since the intersection of these two sets of unions is disjoint
by hypothesis. Let 1�m�K be arbitrary, and assume that v1

m=1 (the
argument for the other two cases is similar). By construction of the !i 's,

[i # N | !i
m�0]$\ .

K

k=1

A2
k+_ \ .

K

k=1

B2
k+$B2

m=B1
m _ B2

m ,

since B1
m=< by hypothesis, and

[i # N | !i
m�0]$\ .

K

k=1

A1
k+_ \ .

K

k=1

B1
k+$A1

m=A1
m _ A2

m ,

since B2
m=< by hypothesis.

Assume it is true for T, and �T+1
t=1 [(�K

k=1 At
k ) _ (�K

k=1 Bt
k )]=<.

Without loss of generality assume that vT+1=(&1, 0, ..., 0). Let

C= ,
T

t=1
_\ .

K

k=1

At
k+_ \ .

K

k=1

Bt
k+&

and define A� t
k=At

k&C for every t=1, ..., T and every k=1, ..., K such that
At

k{<, B� t
k=Bt

k&C for every t=1, ..., T and every k=1, ..., K such that
Bt

k{< except B� 1
1 that we define as

B� 1
1=[B1

k&C] _ _.
T

t=1
_\ .

K

k=1

At
k+_ \ .

K

k=1

Bt
k+&&

c

.

By construction

,
T

t=1
_\ .

K

k=1

A� t
k+_ \ .

K

k=1

B� t
k+&=<.
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Our induction hypothesis is that there exist !1 # [v1, ..., vT ] for every
i # N&C such that for every 1�k�K,

[i # N&C | !i
k�0]$ .

T

t=1

B� t
k and [i # N&C | !i

k�0]$ .
T

t=1

A� t
k .

For every i # C define !i=vT+1. Then for every k>1,

[i # N | !i
k�0]$ .

T

t=1

B� t
k _ C= .

T+1

t=1

B� t
k

since BT+1
k =<,

[i # N | !i
1�0]$ .

T

t=1

B� t
k= .

T+1

t=1

B� t
k

since BT+1
k & C=< and by definition of B� 1

1 , and for every 1�k�K,

[i # N | !i
k�0]$ .

T

t=1

A� t
k _ C= .

T+1

t=1

At
k

since AT+1
k =<, which proves the lemma. Q.E.D.

Proof of Theorem 1. Sufficiency: Voter's sovereignty on A implies that
f (An)$A. Therefore we must show that f (An)�A. Assume f has the
Intersection Property for every (:, S), and suppose f does not preserve
feasibility; that is, there exists : � A and !� # An such that f (!� )=:. Define
S=[!1, ..., !n] and the sets C +

k =[i # N | !i
k�:k] for k # � i # N M&(:, !i)

and C &
k =[i # N | !i

k�:k] for k # �i # N M+(:, !i). Since f is a generalized
median voter scheme we know that C +

k # Rk(:k) and C &
k # Lk(:k). By

hypothesis

,
i # N _\ .

k # M+(:, !i)

C &
k +_ \ .

k # M&(:, ! i)

C +
k +&{<.

Therefore, by the distributive law between unions and intersections,
�i # N C(!i){< for a selection of C(!i) satisfying

C(!i)={C &
ki

C +
ki

if ki # M+(:, !i)
if ki # M&(:, !i)

.

For every i # N, we have that M+(:, !i){< or M&(:, !i){<, otherwise
!i=:.
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Let j # �i # N C(!i). For every i # N, C(!i) is equal to either:

(1) C +
ki

if ki # M&(:, !i) which means that !i
ki

<:ki
; but j # C +

ki
implies ! j

ki
�:ki

, therefore ! j{!i, or

(2) C &
ki

if ki # M+(:, !i) which means that !i
ki

>:ki
; but j # C &

ki
implies ! j

ki
�:ki

, therefore ! j{!i.

(1) and (2) constitute a contradiction with the fact that there exists
! # S such that !=! j.

Necessity: We will show the contrapositive. Suppose f does not satisfy
the intersection property. In order to apply the preceding lemma, we make
the following transformation: for every 1�t�T, define vt as follows

1 if ;t
k>:k

vt
k={0 if ;t

k=:k

&1 if ;t
k<:k .

Define !(:)=(0, ..., 0) and V=[v1, ..., vT ]. For every 1�t�T let

At
k (Bt

k)={lk(:k) (rk(:k))
<

if k # M &(:, ;t) (k # M+(:, ;t))
if k � M &(:, ;t) (k � M+(:, ;t)).

Thus, by the previous lemma there exist !1, ..., !n # V such that for every
1�k�K, [i # N | !i

k�0]$�T
t=1 Bt

k=Bk , and [i # N | !i
k�0]$�T

t=1 At
k=

Ak . This means that there exist ;1, ..., ;n # S such that for every 1�k�
K, [i # N | !i

k�0]=[i # N | ;i
k�:k]$Bk=rk(:k) and [i # N | !i

k�0]=
[i # N | ;i

k�:k]$Ak=lk(:k). Since f is a generalized median voter scheme
we have that for every 1�k�K, fk(;1, ..., ;n)=:k , which implies that
there exists ;� # An such that f (;� )=: � A. Q.E.D.

Theorem 3 follows from Propositions 2 and 3. Although it would be
natural to first prove that we should restrict attention to voting schemes
(Proposition 2) and then show that strategy-proof voting schemes must be
generalized median voter schemes (Proposition 3), it is convenient to
reverse this order. This is because the proof of Proposition 2 involves an
induction argument on the number of agents, while Proposition 3 can be
proved directly for any n, and its conclusion is used for the induction
argument.

Lemma 2. For every :~ # Rn
F , every k=1, ..., K and every ;k # Bk

l(:~ , ;k) # L f
k(;k) � [ f (:~ )]k�;k .
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Proof. Sufficiency is obvious by the definition of l(:~ , ;k) and L f
k(;k).

To show necessity, let l(:~ , ;k) # L f
k(;k). Then _#~ # Rn

F such that #~ i
k�;k

\i # l(:~ , ;k), #~ i
k>;k \i � l(:~ , ;k) and [ f (#~ )]k�;k . We will show that

[ f (:~ )]k�;k . We consider the sequence (#~ &i | :~ i) for i # l(:~ , ;k) and prove
that [ f (#~ &i | :~ i)]k�;k . Since f is strategy proof, f (#~ &i | :~ i) # MB(:~ i, f (#~ )).
Otherwise take Pi # P� such that: :~ i={(Pi) and [! # MB(:~ i, f (#~ )) O
!Pi f (#~ &i | :~ i)]. Then player i can manipulate at (#~ &i | :~ i), since f (#~ )
Pi f (#~ &i | :~ i). Notice that :~ i

k�;k and [ f (#~ )]k�;k , which implies that
[ f (#~ &i | :~ i)]k�;k . By the same type of reasoning, and changing sequen-
tially #~ i by :~ i for i � l(:~ , ;k) one obtains that [ f (:~ )]k�;k . Q.E.D.

Proof of Proposition 3. To show that f is a generalized median voter
scheme defined by L f one has just to establish the equivalence

f (:~ )=; iff l(:~ , ;k) # L f (;k)

and l(:~ , ;k&1) � L f (;k&1) \k=1, ..., K,

since L f is a family of left-coalition systems.
Let f (:~ )=;. Consider l(:~ , ;k), which by construction belongs to

L f
k(;k). Assume that l(:~ , ;k&1) # L f

k(;k&1). Then [ f (:~ )]k<;k by
Lemma 2, which is a contradiction.

To show the other direction in the equivalence, notice that Lemma 2
establishes that [ f (:~ )]k�;k for every k=1, 2, ..., K. It suffices to show
that [ f (:~ )]k�;k . This is because l(:~ , ;k&1) � L f

k(;k&1) O [ f (:~ )]k>
;k&1 O [ f (:~ )]k�;k . Q.E.D.

Lemma 2 used in the proof of Proposition 3 implies that the set of weak
and strong left (right) coalitions at ;k are indeed the same.

Our next definition will be useful in the proof of Proposition 2, which
follows a line of reasoning initiated in Barbera� and Peleg [1].

Definition 14. For a social choice function F : P� n � B, the set of
options, given Pi # P� , is defined by

oF
&i (Pi)=[: # B | _P&i # P� n&1 such that F(Pi , P&i)=:].

Proof of Proposition 2. By induction on n, the number of agents.

Step 1 (n=2): If F : P� 2 � B is strategy-proof on P� , then F is a voting
scheme on RF .

Proof of Step 1. By repeatedly using the fact that for two person social
choice functions, strategy proofness implies that for every profile (P1 , P2),
F(P1 , P2) is the P2-maximal element on oF

2(P1) and also the P1-maximal
element on oF

1(P2), it is easy to show that strategy proofness of F implies
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that if oF
2(P1)=oF

2(P$1) then F(P1 , P2)=F(P$1 , P2). Therefore, following
similar techniques first introduced by Barbera� and Peleg [1], we have that
for all P1 and P$1 in P�

{RF
(P1)={RF

(P$1) implies oF
2(P1)=oF

2(P$1). (3)

Step 2 (n>2): We want to show that if (P1 , ..., Pn) # P� n and (P$1 , ...,
P$n) # P� n are such that {RF

(Pi)={RF
(P$i) for every i # N, then F(P1 , ..., Pn)=

F(P$1 , ..., P$n). The result is obtained by repeated use of the following lemma.

Lemma: If P1 , P$1 # P� are such that {RF
(P1)={RF

(P$1), then for every
(P2 , ..., Pn) # P� n&1 one has that F(P$1 , P2 , ..., Pn)=F(P1 , P2 , ..., Pn).

Proof of lemma.

Claim 1. {RF
(P1)={RF

(P$1) O oF
&1(P1)=oF

&1(P$1).

Proof of claim 1. Consider the function G : P� 2 � B defined by
G(P1 , P2)=F(P1 , P2 , ..., P2) for every (P1 , P2) # P� 2. It is easy to show that
RF=RG and that F being strategy proof implies that G is also strategy
proof. Therefore, we can use (see (3) above) that oG

2 (P1)=oG
2 (P$1) for every

P1 and P$1 with the same top on RF . Hence, it is sufficient to show that
oG

2 (P1)=oF
&1(P1). Clearly oG

2 (P1)�oF
&1(P1). To show the other inclusion

suppose that there exists : such that F(P1 , P2 , ..., Pn)=: � oG
2 (P1). For

P # P� (:), strategy proofness of F implies that F(P1 , P, P3 , ..., Pn)=:
because otherwise, agent 2 could manipulate at this profile. One gets the
result by replacing sequentially P for Pi (i>2).

Claim 2. F(P$1 , P2 , ..., Pn)=F(P1 , P2 , ..., Pn).

Proof of claim 2. By induction on n. If n=2, strategy proofness implies
that agent 2 maximizes over the option set left by agent 1, and therefore
if the sets of options are the same, F has to take the same value.

Now, suppose the induction hypothesis holds for n&1, but not for n.
Then, there exist (P2 , ..., Pn) # P� n&1 such that

F(P$1 , P2 , ..., Pn)=:${:=F(P1 , P2 , ..., Pn). (4)

Define, for all P1 # P� , FP1
: P� n&1 � B by FP1

(P2 , ..., Pn)=F(P1 , P2 , ..., Pn).
Denote FP1

and FP1
, by G and G$ respectively. Since F is strategy proof on

P� , G and G$ are strategy-proof on P� . Clearly RG=RG$ , since RG=
oF

&1(P1)=oF
&1(P$1)=RG$ . Since P� $P(RF) and RF$RG we have that

P(RG)�P(RF)�P� . By the induction hypothesis G and G$ are tops only
on RG . Therefore G and G$ can be considered functions from (RG)n&1 to
RG , which are strategy-proof on P� $P(RG). Our contradiction hypothesis
implies that there exist :2, ..., :n # RG , :i={RG(Pi) for i=2, ..., n, such that
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G(:2, ..., :n)=:{:$=G$(:2, ..., :n). Proposition 3 implies that G and G$ are
generalized median voter schemes. Since :{:$, we can assume that there
exists K�k�1 such that :k>:$k . Define l=[i>1 | :i

k�:$k] and r=
[i>1 | :i

k�:k]. Since the k th component of G and G$ are different one
must have that l # L$k(:$k) and l � Lk(:$k), r # Rk(:k) and r � R$k(:k), where
L$k and Lk (R$k and Rk) are the left (right) coalitions associated to G$ and
G, respectively. Let ;={RF

(P1)={RF
(P$1). Either :$k<;k or ;k<:k . We

are going to obtain a contradiction for the first case using the left coalition
system; the second case is similar using the right coalition system. Let '=
('2, ..., 'n) where 'i=:$ if i # l and 'i=; if i � l. Then, since G is a
generalized median voter scheme, G(') # MB(:$, ;), [G(')]k>:$k and
[G$(')]k=:$k . We are going to obtain, first, a contradiction for the case
where ;={(P1)={(P$1) # RF , and then, using this fact, obtain a contradic-
tion for the general case. Assume that ;={(P1)={(P$1) # RF . If G$(')=:$
there exist P� i # P('i) for i>1 such that F(P1 , P� 2 , ..., P� n) P$1F(P$1 , P� 2 , ...,
P� n) which contradicts strategy-proofness of F. If G$('){:$ replace in the
above argument :$ by G$('). Since G$(') was an element of MB(:$, ;)
iterating this argument one gets '� =('� 2, ..., '� n) # (RG)n&1 where '� i=# if
i # l, '� i=; if i � l, #k=:$k , G$('� )=# and G('� ) # MB(#, ;)&[#]. Then,
there exist P� i # P('� i) for i>1 such that G('� )=F(P1 , P� 2 , ..., P� n) P$1F(P$1 ,
P� 2 , ..., P� n)=G$('� ) which contradicts strategy-proofness of F. Assume now
that ;={RF

(P1)={RF
(P$1) # RF . By the same argument just used above we

can identify a '� =('� 2, ..., '� n) # (RG)n&1 where '� i=# if i # l, '� i=; if i � l,
#k=:$k , G$('� )=# and G('� ) # MB(#, ;)&[#]. Consider any P� 1 , P� $1 # P(;)
and let G� and G� $ be the associated generalized median voter schemes on
P� n&1 once P� 1 and P� $1 are fixed. We have just seen that in this case, G� and
G� $ coincide, hence G� ('� )=G� $('� ) # MB(G$('� ), ;). We must have that G('� ) �

MB(G� ('� ), ;), otherwise it would contradict strategy proofness of F, since
F(P1 , P� 2 , ..., P� n) P� 1F(P� 1 , P� 2 , ..., P� n) for P� i # P('� i) for i>1. Therefore, there
exists P� 1 # P(;) (and its associated G� ) such that ;P� 1G('� ) P� 1G� ('� ). Now,
G� ('� )=G� $('� )=G� ('� ) and therefore we obtain the contradiction of strategy
proofness of F since G('� )=F(P1 , P� 2 , ..., P� n) P� 1 F(P� 1 , P� 2 , ..., P� n)=G� ('� ) for
P� i # P('� i) for i>1. Q.E.D.

Theorem 2 follows trivially from Propositions 5, 6 and 7 below.

Proposition 5. Let vT+1 and S be given. vT+1 is redundant for S if and
only if there exists vt # S such that sup +(vt)�sup+(vT+1) and sup&(vt)�
sup&(vT+1).

Proof. To prove sufficiency, let vT+1 and S be given. Assume, without
loss of generality, that v1 is such that sup+(v1)�sup+(vT+1) and
sup&(v1)�sup&(vT+1). Let !� # Vn and assume that f (!� )=0. Then by the
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intersection property, there exist c1 # L1(0) _ R1(0), ck2
# Lk2

(0) _ Rk2
(0), ...,

ckT
# LkT

(0) _ RkT
(0), ckT+1

# LkT+1
(0) _ RkT+1

(0) such that c1 &
(�T+1

t=2 ckt
)=<. Moreover, c1=ckT+1

since sup+(v1)�sup+(vT+1) and
sup&(v1)�sup&(vT+1). Therefore, the empty intersection can be expressed
as c1 & (�T

t=2 ckt
)=<. Thus, there exist #~ =(#1, ..., #n) # S n such that

f (#~ )=0.
To show necessity, we will prove the contrapositive. Assume that for

every 1�t�T, sup+(vt)&sup+(vT+1){< or sup&(vt)&sup&(vT+1){
<. We have to show that there exists a generalized median voter scheme
satisfying voter's sovereignty such that f (!� )=0 for a !� # Vn and f (#~ ){0 for
every #~ # S n. Without loss of generality assume that T+1=K and for every
1�t=k�K, sup+(vk)=k and sup&(vk)=<. Consider any generalized
median voter scheme f defined by L satisfying the following property:
l1(0)= } } } =lK&1(0)=[1] and lk(0)=[2]. Then, since �K&1

k=1 lk(0)=
[1] and �K

k=1 lk(0)=[1] & [2]=< we must have that f (#~ ){0 for every
#~ # Sn and there exists !� # Vn such that f (!� )=0. Q.E.D.

Proposition 6. Given A�B there exists, up to a support transforma-
tion, a unique crucial subset of A.

Proof. Existence is trivial since A is finite. Suppose S� {S$ are crucial
subsets of A. Without loss of generality assume there exists v # S� &S$. Since
v � S$ and S$ is crucial, v is redundant for S$; therefore there exists v$ # S$
such that sup+(v)�sup+(v$) and sup&(v)/sup&(v$). If v$ # S� then v is
redundant for S� which contradicts that S� is crucial. If v$ � S� then it is
redundant for S� ; therefore there exists v̂ # S� such that sup+(v$)�sup+(v̂)
and sup&(v$)/sup&(v̂). Therefore sup+(v)�sup+(v̂) and sup&(v)/
sup&(v̂), but v, v̂ # S� contradicting that S� is crucial. Q.E.D.

Proposition 7. Suppose that S� �A is crucial and : � A. Then for every
generalized median voter scheme f the following is true: For every S�A, f
has the intersection property for (:, S) if and only if f has the intersection
property for (:, S� ).

Proof. Let f be a generalized median voter scheme. Necessity is trivial.
To show sufficiency, assume that there exists S�A such that f does not
have the intersection property for (:, S). Then f does not also have the
intersection property for (:, S _ S� ). Since S� is crucial, every v # S&S� is
redundant for S� , therefore, by Proposition 1, f does not have the intersec-
tion property for (:, S _ S� &[v]). We can keep subtracting from the union
elements in S&S� until we obtain that f does not have the intersection
property for (:, S� ). Q.E.D.
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